逆序对问题的求解 Solution of Inverse-Pairs Problem

时间复杂度最低的方法是,修改归并排序(Merge Sort),在排序同时对逆序对计数。时间复杂度为

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
int inversePairsCore(int *data, int *copy, int first, int last) {
if (first == last) {
copy[first] = data[first];
return 0;
}
int middle = (first + last)/2;
int leftCount = inversePairsCore(copy, data, first, middle);
int rightCount = inversePairsCore(copy, data, middle+1, last);

int count = 0;
int i = first, j = middle+1, k = first;
// count # of inverse-pairs
while (i <= middle && j <= last) {
if (data[i] <= data[j]) { // ATTENTION!
copy[k++] = data[i++];
count += j - (middle+1);
} else {
copy[k++] = data[j++];
}
}
while (i <= middle) {
copy[k++] = data[i++];
count += j - (middle+1);
}
while (j <= last) {
copy[k++] = data[j++];
}
return leftCount + rightCount + count;
}
public:
int InversePairs(vector<int> data) {
if (data.empty()) return 0;

int *p = data.data(); // C++11
int n = data.size();
int *copy = new int[n];
memcpy(copy, p, sizeof(int) * n);
return inversePairsCore(p, copy, 0, n-1);
}
};

注意:data[i] <= data[j] 这里不能写成<,因为在两个数相同的情况下,先选取左边的才能让总和尽可能小。比如 [1,2,1,2,1] 的逆序和是3,而不是7。

Ref.

  • 《剑指Offer》何海涛